Facebook Twitter Instagram
    Thursday, June 30
    Trending
    • Beiramar House / Merooficina | ArchDaily
    • Hatebreed’s Jamey Jasta acquires rights to Milwaukee Metalfest, which returns in 2023
    • Logan Paul Signs Multi-Year Deal With WWE
    • Tom Brady impressed with video of Anthony Edwards playing football
    • Swiatek extends win streak record despite Wimbledon scare
    • iFixit starts selling Pixel parts for DIY repairs
    • Samsung just beat TSMC to the 3nm punch
    • Samsung Gaming Hub Brings GeForce NOW, Xbox, Twitch And More To TVs Starting Today
    Facebook Twitter Instagram Pinterest VKontakte
    Swave Digest
    • Home
    • World News
    • Technology
      • Smartphones
      • Computers
      • Programming
      • Automobiles
    • Entertainment
      • Music
      • Anime
      • Movies
    • Sports
      • Football
      • Basketball
      • Tennis
    • Business
      • Crypto
      • Stocks
      • NFT
    • Lifestyle
      • Fashion
      • Health
      • Travel
    • Shop
    Swave Digest
    Home»Lifestyle»Health»GPR183 gene a novel drug target for severe COVID-19
    Health

    GPR183 gene a novel drug target for severe COVID-19

    Swave DigestBy Swave DigestJune 17, 2022No Comments5 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    GPR183 gene a novel drug target for severe COVID-19 ImageForNews 717049 16554422986494848
    Share
    Facebook Twitter LinkedIn Pinterest Email

    In a recent study posted to the bioRxiv* pre-print server, researchers provide the first preclinical evidence of the usefulness of antagonists of G-protein coupled receptor 183 (GPR183), also known as Epstein-Barr virus-induced gene 2 (EBI2), in reducing coronavirus disease 2019 (COVID-19) severity.

    GPR183 gene a novel drug target for severe COVID-19 4415 829434GPR183 gene a novel drug target for severe COVID-19 4415

    Study: Oxysterols drive inflammation via GPR183 during influenza virus and SARS-CoV-2 infection. Image Credit: Andrii Vodolazhskyi / Shutterstock

    Table of Contents

    • Background
    • About the study
    • Study findings
    • Conclusions
    • *Important notice

    Background

    Infection from influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to the production of oxidized cholesterols, or oxysterols, such as 7α,25-dihydroxycholesterol (7α,25-OHC), which are markers of lung inflammation.

    Studies have shown that allergen exposure increase oxysterols in bronchoalveolar lavage fluid (BALF). Likewise, it increases in the sputum of chronic obstructive pulmonary disease (COPD) patients. However, studies have not investigated oxysterols-driven lung inflammation following viral respiratory infections.

    GPR183 expressed on macrophages is a key cellular component of the innate and adaptive immune systems. When combined with its oxysterol ligands, GPR183 facilitates the distribution of immune cells to secondary lymphoid organs. Therefore, blocking GPR183 using antagonists could be therapeutically beneficial in reducing COVID-19-related lung inflammation and disease severity.

    About the study

    In the present study, researchers used two preclinical murine models of IAV and SARS-CoV-2 infection to demonstrate oxysterols-driven GPR183-mediated macrophage infiltration of the lungs, which can be lethal. It can lead to a cytokine storm, severe lung tissue injury, acute respiratory distress syndrome (ARDS), and death following viral infections, including IAV and SARS-CoV-2 infections.

    Schematic figure of the role of GPR183 in the immune response to SARS789 CoV-2 and IAV infections. SARS-CoV-2 and IAV infections lead to the upregulation of CH25H and CYP7B1 which results in the production of 7a,25-OHC. This oxysterol chemotactically attracts GPR183-expressing macrophages to the lungs where they produce pro-inflammatory cytokines. Pharmacological inhibition of GPR183 attenuates the infiltration of GPR183-expressing macrophages, leading to reduced production of inflammatory cytokines without negatively affecting antiviral responses.

    Schematic figure of the role of GPR183 in the immune response to SARS789 CoV-2 and IAV infections. SARS-CoV-2 and IAV infections lead to the upregulation of CH25H and CYP7B1 which results in the production of 7a,25-OHC. This oxysterol chemotactically attracts GPR183-expressing macrophages to the lungs where they produce pro-inflammatory cytokines. Pharmacological inhibition of GPR183 attenuates the infiltration of GPR183-expressing macrophages, leading to reduced production of inflammatory cytokines without negatively affecting antiviral responses.

    The team infected mice with IAV and determined the messenger ribonucleic acid (mRNA) expression of oxysterol-producing enzymes, cholesterol 25-hydroxylase (CH25H), and 25HC 7α-hydroxylase (CYP7B1) in their lungs. Likewise, they infected mice with a mouse-adapted SARS-CoV-2 strain by passaging the Beta variant four times in C57BL/6J mice. They also performed experiments on mice genetically deficient in GPR183 (Gpr183-/-).

    The team administered synthetic GPR183 antagonist (2E)-3-(4-Bromophenyl)-1-[4-(4-methoxybenzoyl)-1-piperazinyl]-2-propen-1-one (NIBR189) into C57BL/6J mice twice daily starting from 24 h post-infection until the end of the experiment. In addition, they performed flow cytometry analysis on lung single-cell suspensions from C57BL/6J and Gpr183-/- mice treated with NIBR189 and vehicle, respectively. Further, the researchers investigated whether the reduced macrophage infiltration and inflammatory cytokine profile in the lung of the NIBR189-treated mice were associated with altered viral loads based on measurements of nucleocapsid protein (Np) expression.

    Study findings

    Similar to the IAV infection results, mRNA expression of CH25H and CYP7B1 was significantly upregulated in the lungs of SARS-CoV-2 infected mice. IHC further confirmed these results at the protein level. Also, Gpr183-deficient mice had less severe SARS-CoV-2 infection. Two days post-infection, mice lung homogenates had high concentrations of 7α,25-OHC. Moreover, NIBR189-treated C57BL/6J mice lost less weight, recovered faster, and had significantly reduced macrophage infiltration into the lung at two and five dpi compared to infected C57BL/6J mice receiving vehicle. While the NIBR189 treatment did not affect early IFN responses, IFN responses at five dpi were significantly lower.

    The SARS-CoV-2 Np expression was not detected at five dpi when the animals recovered from the infection. However, at the mRNA level, SARS-CoV-2 main protease (Mpro) RNA loads in the lungs of NIBR189-treated mice were significantly lower at five dpi. Overall, the study findings indicated that GPR183 antagonists reduced viral loads, macrophage infiltration, and production of pro-inflammatory cytokines.

    Early type I and III interferons (IFNs) are crucial in controlling viral replication during IAV and SARS-CoV-2 infections. Conversely, persistent type I IFN responses can be detrimental to the host and contribute to the development of cytokine storms. Lower pro-inflammatory cytokine production in the NIBR189-treated animals thus indicated good disease outcomes and more effective viral clearance. Notably, unlike 7α,25-OHC, which inhibits SARS-CoV-2 infection in vitro by blocking the virus-host cell membrane fusion, given that it is structurally different from cholesterols, NIBR189 does not disrupt the host cell membrane composition.

    Conclusions

    The current study demonstrated the dual benefits of the GPR183 antagonist NIBR189. First, NIBR189 reduced macrophage infiltration and inflammatory cytokine production in the lungs of IAV- and SARS-CoV-2-infected animals. However, only in SARS-CoV-2-infected mice NIBR189 significantly improved infection severity by decreasing viral loads. Moreover, short-term use of a GPR183 antagonist during the acute viral infection did not negatively impact antibody responses. Most importantly, a GPR183 antagonist-based therapy could prove effective against newly emerging SARS-CoV-2 variants without further adaption because it targets the host, not the virus. Nevertheless, it requires further investigation into why NIBR189 had no impact on IAV viral loads and whether this was due to pathogen or severity of infection.

    *Important notice

    bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

    Journal reference:

    • Oxysterols drive inflammation via GPR183 during influenza virus and SARS-CoV-2 infection, Cheng Xiang Foo, Stacey Bartlett, Keng Yih Chew, Minh Dao Ngo, Helle Bielefeldt-Ohmann, Buddhika Jayakody Arachchige, Benjamin Matthews, Sarah Reed, Ran Wang, Matthew J. Sweet, Lucy Burr, Jane E. Sinclair, Rhys Parry, Alexander Khromykh, Kirsty R. Short, Mette M. Rosenkilde, Katharina Ronacher, bioRxiv pre-print 2022, DOI: https://doi.org/10.1101/2022.06.14.496214https://www.biorxiv.org/content/10.1101/2022.06.14.496214v2

    covid-19 drug for gene gpr183 health novel severe target
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Swave Digest
    • Website
    • Twitter
    • Pinterest

    Related Posts

    iFixit starts selling Pixel parts for DIY repairs

    June 30, 2022

    Mary J. Blige And Apple Music Team Up For Exclusive Performance

    June 30, 2022

    Bilt Rewards launches a travel portal for members

    June 30, 2022

    Refugees at higher risk for persistent infections

    June 30, 2022
    Add A Comment

    Leave A Reply Cancel Reply

    Twitter Instagram Pinterest
    • Home
    • Privacy Policy
    • Terms & Conditions
    • Contact Us
    © 2022 Swave Digest. All Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.

    Posting....
    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
    In case of sale of your personal information, you may opt out by using the link Do not sell my personal information.
    Cookie settingsACCEPT
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    Save & Accept